
AFRL-AFOSR-UK-TR-2010-0016

Advanced Non-Equilibrium Modelling for Hypersonic
Applications

Olivier P Chazot

 Von Karman Institute for Fluid Dynamics (VKI)
 72 Chaussee de Waterloo

 Rhode-Saint-Genese, Belgium B-1640

EOARD GRANT 08-3070

January 2011

Final Report for 01 August 2008 to 01 August 2010

Air Force Research Laboratory
Air Force Office of Scientific Research

European Office of Aerospace Research and Development
Unit 4515 Box 14, APO AE 09421

Distribution Statement A: Approved for public release distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

26 January 2011
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

01 August 2008 – 01 August 2010
4. TITLE AND SUBTITLE

Advanced Non-Equilibrium Modelling for Hypersonic Applications

5a. CONTRACT NUMBER

FA8655-08-1-3070
5b. GRANT NUMBER

Grant 08-3070
5c. PROGRAM ELEMENT NUMBER

61102F

6. AUTHOR(S)

Professor Olivier Chazot

5d. PROJECT NUMBER

5d. TASK NUMBER

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Von Karman Institute for Fluid Dynamics (VKI)
72 Chaussee de Waterloo
Rhode-Saint-Genese B-1640
Belgium

8. PERFORMING ORGANIZATION
 REPORT NUMBER

Grant 08-3070

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
Unit 4515 BOX 14
APO AE 09421

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL/AFOSR/RSW (EOARD)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

AFRL-AFOSR-UK-TR-2010-0016

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In this final report we provide a detailed account of how to call the subroutines of the Mutation library in the context of a
practical computational fluid dynamics (CFD) application. The subroutines which were documented in the previous report are
shown how to be called in a detailed, step-by-step fashion, from computation of the thermodynamic properties to the transport
properties. Specific emphasis is given to integrating the Mutation library with external CFD solvers provided by the user. This is
accomplished by providing detailed source code which shows exactly how the library subroutines are to be called. The source
code is fully-functioning and may serve as a template for users to build their solvers around that will enable researchers
working with the Mutation library to integrate their applications with ease. The subroutines and example code herein, provided
in three different computing languages, are a direct implementation of the theory discussed in the second report. Every attempt
has been made to use consistent nomenclature and notation, so that the code provided here can be easily compared with the
theoretical description.

15. SUBJECT TERMS

EOARD, Thermal Protection & Control, Plasma Aerodynamic, Hypersonic Flow

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18, NUMBER
OF PAGES

33

19a. NAME OF RESPONSIBLE PERSON
Gregg Abate
 a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS 19b. TELEPHONE NUMBER (Include area code)
+44 (0)1895 616021

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Advanced non-equilibrium modelling for
hypersonic applications

Investigators: Prof. Olivier Chazot (P.I.),
Prof. Thierry E. Magin, Dr. M. Panesi, and Dr. M. Kapper

Olivier.Chazot@vki.ac.be

Aeronautics and Aerospace Department

von Karman Institute for Fluid Dynamics

Contents

1 Introduction 3

2 Conservation equations for reactive and plasma flows 3
2.1 Species continuity . 3
2.2 Total continuity . 4
2.3 Momentum equation . 4
2.4 Species energy conservation . 4
2.5 Total energy conservation . 4

3 Cases: thermodynamic and transport properties 5
3.1 Local thermodynamic equilibrium (LTE) with constant elemental fractions 5
3.2 Chemical non-equilibrium and thermal equilibrium 6
3.3 Chemical and thermal non-equilibrium (Th 6= Te 6= Tr 6= Tv) 7
3.4 Caloric equation of state (EOS) . 7
3.5 Transport properties . 8
3.6 Deallocating memory . 10

4 Documentation and distribution 11

A Source code 12
A.1 Fortran 77 implementation . 12
A.2 C implementation . 18
A.3 Java implementation . 25

FA 8655-08-1-3070 - 1 - Final report

- 2 -

GAbate
Typewritten Text
This Page is Blank

2 CONSERVATION EQUATIONS FOR REACTIVE AND PLASMA FLOWS

1 Introduction

In this final report we provide a detailed account of how to call the subroutines of the
Mutation library in the context of a practical computational fluid dynamics (CFD) ap-
plication. The subroutines which were documented in the previous report are shown how
to be called in a detailed, step-by-step fashion, from computation of the thermodynamic
properties to the tranport properties. Specific emphasis is given to integrating the Mu-
tation library with external CFD solvers provided by the user. This is accomplished by
providing detailed source code which shows exactly how the library subroutines are to
be called. The source code is fully-functioning and may serve as a template for users to
build their solvers around that will enable researchers working with the Mutation library
to integrate their applications with ease.

The subroutines and example code herein, provided in three different computing lan-
guages, are a direct implementation of the theory discussed in the second report. Every
attempt has been made to use consistent nomenclature and notation, so that the code
provided here can be easily compared with the theoretical description.

2 Conservation equations for reactive and plasma flows

A previously discussed, the Mutation library is intended to provide thermodynamic, chem-
ical production rates and transport properties to multi-component plasma flows in high-
enthalpy flows such as re-entry and hypersonic, air-breathing vehicles. In a typical CFD
application for flows in the continuum regime, the Navier-Stokes equations can be solved
via any one of numerous available numerical techniques. As an example, when solving
for the flow structure through shock-heated plasma, approximate Riemann solvers can
be employed to solve for the convective fluxes when shock-capturing is desired. If shock-
capturing techniques are not required, the shock jump conditions can be computed from
the Rankine-Hugoniot relations, which provide the initial conditions for solving the system
of ordinary differential equations that result from reducing the Navier-Stokes equations to
their time-independent form. Whichever solution technique is used to solve the convective
component of the governing equations, it is the subroutines of the Mutation library which
compute the thermodynamic and transport properties of the flow. The task of interfacing
a CFD application and the Mutation library simply becomes a matter of passing the flow
variables from the CFD solver to the Mutation subroutines.

To illustrate how the interfacing is done, the Navier-Stokes equations in the following
sections are reduced to three simplified cases for which the Mutation library provides
specialized subroutines. The subroutines are detailed in the text and correspond directly
to the working code examples provided in Appendix A. Working code is provided in Fotran
77, C, and Java.

2.1 Species continuity

For multi-component flows, the continuity equation for the ith specie may be written as

∂ρi

∂t
+∇ · (ρiv) +∇ · (ρiVi) = Miω̇i, i ∈ S (1)

Final report - 3 - FA 8655-08-1-3070

2 CONSERVATION EQUATIONS FOR REACTIVE AND PLASMA FLOWS

where ρi is the mass density of specie i, v is the bulk velocity, and Vi, Mi, and ω̇i are
respectively the mass diffusion velocity, molecular weight, and mass production rate of
species i.

2.2 Total continuity

Summing equation (1) over all species, the total mass continuity equation is obtained

∂ρ

∂t
+∇ · (ρv) = 0 (2)

where ρ =
∑

i∈S
ρi is the total mass density,

∑
i∈S

ρiVi = 0 and
∑

i∈S
Mi ˙omegai = 0.

2.3 Momentum equation

The momentum equation is given by

∂ρv

∂t
+∇ · (ρv ⊗ v) +∇ · P− nqE′ − j×B = 0 (3)

where P is the stress tensor, q =
∑

i∈S
xiqi is the mixture charge, xi is the mole frac-

tion, and j =
∑

i∈S
niqiVi is the mixture conduction current. The electric field in the

hydrodynamic field is given by E′ = E+ v ×B.

2.4 Species energy conservation

The species energy equations are given by

∂ρiei

∂t
+∇ · (ρieiv) +∇ · qi − ji · E

′ + ρiVi ·
d

dt
v + Pi : ∇v = ∆Ei, i ∈ S (4)

for species energy ρiei =
3

2
nikBTi for translational modes, with the species heat flux qi,

and energy exchange terms ∆Ei. For molecular plasma, ρerot and ρevib may also be
convected for cases under thermal non-equilibrium where the translational, rotational,
and vibrational temperatures vary greatly from one another.

2.5 Total energy conservation

Summing equation (4) over all species, the total energy conservation equation is obtained

∂E

∂t
+∇ · (Ev) +∇ · q− j · E′ + P : ∇v = 0 (5)

where E = ρe =
∑

i∈S
ρiei is the total energy density and q = qh + qe is the total heat

flux (sum of heavy-particle and electron components).

Final report - 4 - FA 8655-08-1-3070

3 CASES: THERMODYNAMIC AND TRANSPORT PROPERTIES

3 Cases: thermodynamic and transport properties

The Mutation library is applicable to solving distinct cases of the governing equations
above, for which three possible applications are reviewed here. They employ various
levels of simplifying assumptions which allow a range of computational performance bal-
anced with accuracy. These cases are presented in the following sections, whose governing
equations will be given in the form

∂Q

∂t
+

∂Fc

∂x
+

∂Fd

∂x
= S (6)

where Q is the vector of conserved variables, Fc is the vector of convective fluxes, Fd is
the vector of diffusive fluxes, and S is the vector of source terms. It is important to note
that throughout this report, only the conservative form of the governing equations are
considered which are the most general and must be used when solving for time-accurate
flows. However, if desired, the Mutation library can be applied to primitive variable
formulations and is straight-forward.

3.1 Local thermodynamic equilibrium (LTE) with constant ele-
mental fractions

When the assumption of chemical equilibrium with constant elemental fractions can be
made, the governing equations can be greatly simplified. Only the total species continuity
equation (2) need be solved as the individual species mass densities can be obtained based
on equilibrium considerations. Furthermore, under local thermal equilibrium (LTE), the
various internal modes are in equilibrium and the total energy is obtained from (5). The
governing equations reduce to

Q = [ρ, ρv, E]T (7)

Fc = [ρv, ρv ⊗ v + pI,vH]T (8)

Fd = [0, τ + q,vτ]T (9)

S = [0, FL, σe < E2 >]T (10)

where I is the identity matrix, H is the total enthalpy density, τ is the deviatoric stress
tensor, and σe < E2 > are the energy-averaged thermal relaxation terms.

In this case, the following subroutines provided in the Mutation library can be used
to compute the thermodynamic properties of the flow, including the bulk temperature
and pressure once the conservative variables are provided by the CFD code. the methods
called in order to compute the thermodynamic and transport properties of the fluid.

• Compute elemental mole fractions
CALL NUCLEAR (XN)

• Compute bulk temperature and species mass fractions
CALL TCEQNEWTON (RHOE, RHO, XN, YINI, TINI, T, Y)

• Compute mole fractions from mass fractions
CALL MASS2MOLE (Y, X)

Final report - 5 - FA 8655-08-1-3070

3 CASES: THERMODYNAMIC AND TRANSPORT PROPERTIES

• Compute pressure using ideal gas law
CALL MASS2PRESSURE (RHO, T, T, Y, P)

• Compute the total number density
CALL NUMBERD (P, T, T, X, ND)

With the exception of CALL NUCLEAR (XN), theses subroutines are called at every iteration
in a CFD computation. Good guesses for the initial temperature, mole and mass fractions
can be obtained from the previous CFD interation. A full description of the subroutine
parameters are provided in the Appendix B.

3.2 Chemical non-equilibrium and thermal equilibrium

A second case detailed here, is applicable to flows in LTE but in chemical non-equilibrium.
In such a case, the species continuity equations are solved for each species, thus increasing
the size of the system by the number of species and requiring computation of the mass
diffusion fluxes. Furthermore, finite chemistry requires the rates of chemical production
for both mass and energy.

Q = [ρi, ρv, E]T (11)

Fc = [ρv, ρv ⊗ v + pI,vH]T (12)

Fd = [ρiVi, τ + q,vτ]T (13)

S = [Miω̇i, F
L, ω̇iH

◦

i
]T (14)

where Mi are the molar masses of species i and H◦
i
are the formation energies.

In the case the subroutines to be called are

• Compute bulk temperature
CALL TCNEQNEWTON (RHOE, RHOI, TINI, T)

• Compute mole fractions from mass fractions
CALL MASS2MOLE (Y, X)

• Compute pressure using ideal gas law
CALL MASS2PRESSURE (RHO, T, T, Y, P)

• Compute the total number density
CALL NUMBERD (P, T, T, X, ND)

• Compute the rates for chemistry
CALL ARRHENIUS (Y, TOLY, P, TVEC, RHO, OMEGA)

The subroutines are similar to the first case with the exception of a call to ARRHENIUS

which provides the chemical rates of production. The Newton solver obtains the bulk
temperature implicitly from the mass densities and total energy density.

Final report - 6 - FA 8655-08-1-3070

3 CASES: THERMODYNAMIC AND TRANSPORT PROPERTIES

3.3 Chemical and thermal non-equilibrium (Th 6= Te 6= Tr 6= Tv)

Finally, we consider the case of both chemical and thermal non-equilibrium. The previous
case is augmented to include multiple energy equations for each internal energy component
which cannot be considered in equilibrium with any other component.

Q = [ρi, ρv, ρiei]
T (15)

Fc = [ρv, ρv ⊗ v + pI,vHi]
T (16)

Fd = [ρiVi, τ + q,vτi]
T (17)

S = [Miω̇i, F
L, σei

< E2

i
>]T (18)

In the case the subroutines to be called are

• Compute component temperatures
CALL TCNEQNTNEWTON (RHOE, RHOEE, RHOER, RHOEV, RHOI, TINI, TH, TE, TR,

TV)

• Compute mole fractions from mass fractions
CALL MASS2MOLE (Y, X)

• Compute pressure using ideal gas law
CALL MASS2PRESSURE (RHO, T, T, Y, P)

• Compute the total number density
CALL NUMBERD (P, T, T, X, ND)

• Compute the rates for chemistry
CALL ARRHENIUS (Y, TOLY, P, TVEC, RHO, OMEGA)

The routine TCNEQNTNEWTON takes into account the various energies.

3.4 Caloric equation of state (EOS)

As currently implemented in the Mutation library, the specific heats are computed via
finite differences based on an appropriate ∆T . The procedure implemented in the example
code is summed up as follows.

• Compute perturbed temperatures for finite differences
EPS1 = 1.D0 + EPS, THP = TH*EPSP1, TEP = TE*EPSP1, ...

• Compute the species specific internal energies
CALL ENERGYMASSF(TH , TE , TR , TV , P, EM1 , EM2 , EM3 , EM4 , EM5 , EM6)

CALL ENERGYMASSF(THP, TEP, TRP, TVP, P, EM1P, EM2P, EM3P, EM4P, EM5P, EM6P)

• Compute the specific heat for internal modes
CPE =

∑
I
((EM3P(I) - EM3(I))/(EPS*TH))

CPR =
∑

I
((EM4P(I) - EM4(I))/(EPS*TH))

CPV =
∑

I
((EM5P(I) - EM5(I))/(EPS*TH))

CPINT(1:NS) = MMI(1:NS)*(CPE + CPR + CPV)

Final report - 7 - FA 8655-08-1-3070

3 CASES: THERMODYNAMIC AND TRANSPORT PROPERTIES

Here, 1:NS represents the vector of all species from 1 to the number of species. Current
efforts are aimed at increasing the efficiency of this computation by pre-tabulating the
specific heats to generate look-up tables that can then be accessed by the subroutines.

3.5 Transport properties

With thermodynamic properties and chemical production rates computed, the following
subroutines can be used to compute the transport properties including viscosity and con-
ductivity for all 3 cases mentioned above. The specific applicability of each subroutine is
as indicated.

Firstly,

• Compute collision integrals
CALL COLLISION (TH, TE, ND, X)

• Compute tolerances according to mass constraint
CALL COMPOTOL (X, TOLX, XTOL)

• Compute the mixture viscosity using conjugate gradient method
CALL ETACG (XTOL, ETA)

• Compute the internal thermal conductivity using Eucken’s formula
CALL LAMBDAINT (CPINT, XTOL, LAMBDAINTH)

• Compute the translational thermal conductivity and thermal diffusion ratios of
heavy-particle gas
CALL LAMBDACHICG (XTOL, LAMBDATH, CHIH)

If the mixture contains electrons then the properties of the electron gas are computed via

• Compute the thermal diffusion ratios of the electron gas
CALL TDIFE (XTOL, TE, CHIE, 3)

• Compute the translational thermal conductivity of the electron gas
CALL LAMBDAE (XTOL, TE, LAMBDATE, 3)

Conversely, if the mixture does not contain electron, then these values are set to null,

• Electron translational thermal conductivity is null
LAMBDATE = 0

• Electron thermal diffusion ratios are null
CHIE(1:NS) = 0

Final report - 8 - FA 8655-08-1-3070

3 CASES: THERMODYNAMIC AND TRANSPORT PROPERTIES

3.5.1 Diffusion fluxes

The diffusion fluxes may be computed in one of two ways, using either Stefan-Maxwell’s
equations or Fick’s law with Ramshaw’s approximations for small electron mass. For
mixtures with charged particles, the following subroutine solves the Ramshaw system to
obtain the diffusion fluxes.

• Compute the correction functions of the Stefan-Maxwell equations of the heavy
particle gas
CALL CORRECTION (XTOL, 1, FIJ)

• Compute the mass diffusion fluxes via solution of the Stefan-Maxwell equations
(charged particles)
CALL SMRAMCG (XTOL, TH, TE, ND, DF, FIJ, JDIF, EAMB)

for neutral mixtures, the appropriate calls are

• Compute the correction functions of the Stefan-Maxwell equations of the heavy
particle gas
CALL CORRECTION (XTOL, 1, FIJ)

• Compute the mass diffusion fluxes solution of the Stefan-Maxwell equations (neutral
mixture)
CALL SMNEUTCG (XTOL, ND, DF, FIJ, JDIF)

• Ambipolar electric field is null
EAMB = 0

In either case, the driving forces may be computed by

DF(1:NS) = (XP(1:NS) - X(1:NS))/(TH*EPS) + (CHIE(1:NS) + CHIH(1:NS))/TH

Since the Ramshaw approximation yields an implicit system, it may be desirable to com-
pute the diffusion fluxes from the generalized Fick’s law when Jacobian matrices must be
computed explicitly,

• Compute the binary diffusion coefficient using generalized Fick’s law
CALL DIJFICK (XTOL, ND, DIJ)

• Compute the diffusion fluxes
JDIF(1:NS) =

∑
J
(JDIF(1:NS) - RHOI(1:NS)*DIJ(1:NS,J)*DF(J))

3.5.2 Thermal conductivity

Correct calculation of the total thermal conductivity is dependent upon the equilibrium
state of the mixture. In LTE, the following routine can be used

• Compute the total conductivity for LTE mixture
CALL KCONDUCTIVITY (P, TH, X, XTOL, XN, EPS, LAMBDATOT)

Final report - 9 - FA 8655-08-1-3070

3 CASES: THERMODYNAMIC AND TRANSPORT PROPERTIES

Otherwise, the total thermal conductivity must be computed from its individual contri-
butions

LAMBDAR = −
∑

I

((EM1(I) + 2/3*EM2(I))*JDIF(I))

LAMBDATOT = LAMBDAINTH + LAMBDATH + LAMBDATE + LAMBDAR

where LAMBDAR is the reactive thermal conductivity based on the Stefan-Maxwell equations
and is valid in chemical equilibrium as well.
For the case of chemical non-equilibrium with thermal equilibrium, the following subrou-
tine can be called

• Compute the total thermal conductivity in chemical non-equilibrium and thermal
equilibrium
KCONDUCTIVITYNEQ (P, TH, X, XTOL, XN, EPS, LAMBDATOT)

3.6 Deallocating memory

A convenience method has been provided to automatically deallocate all memory utilized
by the Mutation library. The following routine can be called as such

• Deallocate all memory
CALL FINALIZE()

Final report - 10 - FA 8655-08-1-3070

4 DOCUMENTATION AND DISTRIBUTION

4 Documentation and distribution

The same subroutines are available on all programming platforms and include required
input with indicated units along with the returned values. Although, the documentation
provided here has been generated from the Java interface, subroutine calls for the most
part remain identical in Fortran and C variants. This version supercedes previous versions.

Figure 1: Java applet as it will appear on Mutation’s home page at vki.ac.be.

As the Mutation library undergoes modification and expansion, necessary updates
and revisions will follow. To ensure availability and consistency of the latest releases, a
revision control will be maintained online with the web address to be disclosed. From
this site users will be able to download the most recent Mutation library along with
documentation. Also available will be an interactive applet that will allow users to run
Mutation remotely. A representative snapshot of the applet GUI is provided in Fig. 1.

Final report - 11 - FA 8655-08-1-3070

A SOURCE CODE

A Source code

A.1 Fortran 77 implementation

C−−−
PROGRAM USEMUTATION

C−−−

CHARACTER∗31 PATH
CHARACTER∗4 MIXTURE
CHARACTER∗4 REACTION
CHARACTER∗5 TRANSFER

INTEGER NSMAX,IMOD
INTEGER IS , IC , IV , IE , IVIB , IELEQ
INTEGER NS,NC,NV,NE,NVIB,NELEQ

PARAMETER (NSMAX = 5)

DOUBLE PRECISION EPS, EPSP1
DOUBLE PRECISION TOLX, TOLY
DOUBLE PRECISION XTOL(1 :NSMAX)
DOUBLE PRECISION RHO, RHOE, RHOEE, RHOEV(1 :NSMAX)
DOUBLE PRECISION MM, MMI(1 :NSMAX)
DOUBLE PRECISION XN(1 :NSMAX)
DOUBLE PRECISION XP(1 :NSMAX)
DOUBLE PRECISION X(1 :NSMAX) , Y(1 :NSMAX)
DOUBLE PRECISION Y3(1 :NSMAX) , Y4 (1 :NSMAX) , Y5 (1 :NSMAX)
DOUBLE PRECISION XINI (1 :NSMAX) , YINI (1 :NSMAX)
DOUBLE PRECISION RHOI(1 :NSMAX)
DOUBLE PRECISION P, E, ND
DOUBLE PRECISION T, T2 , T3 , TINI
DOUBLE PRECISION TH , TE , TR , TV (1 :NSMAX)
DOUBLE PRECISION THP, TEP, TRP, TVP(1 :NSMAX)
DOUBLE PRECISION TVEC(1 :NSMAX+2)
DOUBLE PRECISION EM, HM
DOUBLE PRECISION EM1 (1 :NSMAX) , EM2 (1 :NSMAX) , EM3 (1 :NSMAX)
DOUBLE PRECISION EM4 (1 :NSMAX) , EM5 (1 :NSMAX) , EM6 (1 :NSMAX)
DOUBLE PRECISION EM1P(1 :NSMAX) , EM2P(1 :NSMAX) , EM3P(1 :NSMAX)
DOUBLE PRECISION EM4P(1 :NSMAX) , EM5P(1 :NSMAX) , EM6P(1 :NSMAX)
DOUBLE PRECISION HM1 (1 :NSMAX) , HM2 (1 :NSMAX) , HM3 (1 :NSMAX)
DOUBLE PRECISION HM4 (1 :NSMAX) , HM5 (1 :NSMAX) , HM6 (1 :NSMAX)
DOUBLE PRECISION OMEGA(1 :NSMAX)
DOUBLE PRECISION ETA
DOUBLE PRECISION CPE, CPR, CPV
DOUBLE PRECISION CPINT(1 :NSMAX)
DOUBLE PRECISION LAMBDAINTH, LAMBDATH, LAMBDATE
DOUBLE PRECISION CHIE(1 :NSMAX) , CHIH(1 :NSMAX)
DOUBLE PRECISION FIJ (1 :NSMAX∗(NSMAX−1)/2) , JDIF (1 :NSMAX)

Final report - 12 - FA 8655-08-1-3070

A SOURCE CODE

DOUBLE PRECISION DF(1 :NSMAX)

C−−−
PATH = ’../mutation/resources’

MIXTURE = ’air5’

REACTION = ’air5’

TRANSFER = ’empty’

IMOD = 0

EPS = 1 .D−2
EPSP1 = 1 .D0 + EPS

TOLX = 1 .D−16
TOLY = 1 .D−20

C−−
CALL LENGTHF(PATH,MIXTURE,REACTION,TRANSFER)

NS = GETNS()
NC = GETNC()
NE = GETNE()
NV = GETNV()
NVIB = GETNVIB()
NELEQ = GETNELEQ()

C−−
TE = TH;
TR = TH;
IF (NV == 0) THEN

TV(1) = 1 .D0
ELSE

DO IV = 1 , NV
TV(IV) = TH

ENDDO

ENDIF

TVEC(1) = TH
DO IVIB = 1 , NVIB

TVEC(1+IVIB) = TV(1)
ENDDO

TVEC(NVIB+2) = TE

C−−
THP = TH∗EPSP1
TEP = TE∗EPSP1
TRP = TR∗EPSP1
IF (NV == 0) THEN

TVP(1) = TV(1)∗EPSP1

Final report - 13 - FA 8655-08-1-3070

A SOURCE CODE

ELSE

DO IV = 1 , NV
TVP(IV) = TV(IV)∗EPSP1

ENDDO

ENDIF

C−−
DO IS = 1 , NS

X(IS) = 1 .D0/NS; Y(IS) = 1 .D0/NS
XINI (IS) = X(IS) ; YINI (IS) = Y(IS)
Y4(IS) = 1 .D0/NS

ENDDO

C−−
C Subrout ines to be c a l l e d on ly once
C−−

CALL INITIALIZEF(IMOD)
CALL SETMASSF(MMI)
CALL NUCLEARF(XN)

C−−
C CASE 1: Local thermodynamic e qu i l i b r i um (LTE)
C with cons tant e l ementa l f r a c t i o n s
C
C −Obtain RHO, RHOE from CFD code
C −Use temperatue and sp e c i e mass f r a c t i o n s from prev ious
C i t e r a t i o n as i n i t i a l guess
C−−

CALL TCEQNEWTONF(RHOE, RHO, XN, YINI , TINI , T, Y)
CALL MASS2PRESSUREF(RHO, T, T, Y, P)
CALL MASS2MOLEF(Y, X)
CALL NUMBERDF(P, T, T, X, ND)

TH = T; TE = TH; TR = TH
TVEC(1) = TH
TVEC(NVIB+2) = TE

C−−
C CASE 2: Chemical non−e qu i l i b r i um and
C l o c a l thermal e qu i l i b r i um (LTE)
C
C −Obtain RHO, RHOI, Y, RHOE from CFD code
C −Use temperatue and sp e c i e mass f r a c t i o n s from prev ious
C i t e r a t i o n as i n i t i a l guess
C−−

CALL TCNEQNEWTONF(RHOE, RHOI, TINI , TH)

Final report - 14 - FA 8655-08-1-3070

A SOURCE CODE

CALL MASS2PRESSUREF(RHO, TH, TH, Y, P)
CALL MASS2MOLEF(Y, X)
CALL NUMBERDF(P, TH, TH, X, ND)

TE = TH; TR = TH
TVEC(1) = TH
TVEC(NVIB+2) = TE

CALL ARRHENIUSF(Y, TOLY, P, TVEC, RHO, OMEGA)

C−−
C CASE 3: Chemical and thermal non−e qu i l i b r i um
C (TH /= TE /= TV(1) /= TV(2) /= . . .)
C
C −Obtain RHO, RHOI, Y, RHOE, RHOEE, RHOEV from CFD code
C −Compute TE, TR, TV(I)
C −Use temperatue and sp e c i e mass f r a c t i o n s from prev ious
C i t e r a t i o n as i n i t i a l guess
C−−

CALL TCNEQNTNEWTONF(RHOE, RHOEE, RHOEV, RHOI, TINI , TH, TE, TV)
CALL MASS2PRESSUREF(RHO, TH, TE, Y, P)
CALL MASS2MOLEF(Y, X)
CALL NUMBERDF(P, TH, TE, X, ND)

TR = TH
TVEC(1) = TH
DO IVIB = 1 , NVIB

TVEC(1+IVIB) = TV(1)
ENDDO

TVEC(NVIB+2) = TE

CALL ARRHENIUSF(Y, TOLY, P, TVEC, RHO, OMEGA)

C−−
C Calor i c Equation o f S ta t e (EOS)
C−−

THP = TH∗EPSP1
TEP = TE∗EPSP1
TRP = TR∗EPSP1
IF (NV == 0) THEN

TVP(1) = TV(1)∗EPSP1
ELSE

DO IV = 1 , NV
TVP(IV) = TV(IV)∗EPSP1

ENDDO

ENDIF

Final report - 15 - FA 8655-08-1-3070

A SOURCE CODE

CALL ENERGYMASSF(TH, TE, TR, TV, P,
& EM1, EM2, EM3, EM4, EM5, EM6)

CALL ENERGYMASSF(THP, TEP, TRP, TVP, P,
& EM1P, EM2P, EM3P, EM4P, EM5P, EM6P)

DO IS = 1 , NS
CPE = (EM3P(IS) − EM3(IS)) / (EPS∗TH)
CPR = (EM4P(IS) − EM4(IS)) / (EPS∗TH)
CPV = (EM5P(IS) − EM5(IS)) / (EPS∗TH)
CPINT(IS) = MMI(IS)∗ (CPE + CPR + CPV)

ENDDO

C−−
C TRANSPORT equa t i ons
C−−

CALL COMPOTOLF(X, TOLX, XTOL)
CALL COLLISIONF(TH, TE, ND, X)
CALL ETACGF(XTOL, ETA)
CALL LAMBDAINTF(CPINT, XTOL, LAMBDAINTH)
CALL LAMBDACHICGF(XTOL, LAMBDATH, CHIH)

IF (NE /= 0) THEN

CALL TDIFEF(XTOL, TE, CHIE, 3)
CALL LAMBDAEF(XTOL, TE, LAMBDATE, 3)

ELSE

LAMBDATE = 0 .D0
DO IS = 1 , NS

CHIE(IS) = 0 .D0
ENDDO

ENDIF

DO IS = 1 , NS
DF(IS) = (XP(IS) − X(IS)) / (TH∗EPS) + (CHIE(IS) + CHIH(IS))/TH
ENDDO

C−−
C Di f f u s i on f l u x e s
C−−

CALL CORRECTION (XTOL, 1 , FIJ)
IF (NE /= 0) THEN

CALL SMRAMCG (XTOL, TH, TE, ND, DF, FIJ , JDIF , EAMB)
ELSE

CALL SMNEUTCG (XTOL, ND, DF, FIJ , JDIF)
EAMB = 0 .D0

ENDIF

CALL DIJFICK (XTOL, ND, DIJ)
DO IS = 1 , NS

JDIF2(IS) = 0 .D0

Final report - 16 - FA 8655-08-1-3070

A SOURCE CODE

DO JS = 1 , NS
JDIF2(IS) = JDIF2(IS) −RHOI(IS) ∗DIJ (IS , JS) ∗DF(JS)

ENDDO

ENDDO

C−−
C Tota l thermal c ondu c t i v i t y
C−−

LAMBDAR = 0 .D0 ; LAMBDAR2 = 0 .D0
DO IS = 1 , NS

LAMBDAR = LAMBDAR −(EM1(IS) +2.D0/3 .D0 ∗EM2(IS))∗ JDIF(IS)
LAMBDAR2 = LAMBDAR2 −(EM1(IS) +2.D0/3 .D0 ∗EM2(IS))∗ JDIF2(IS)

ENDDO

CALL KCONDUCTIVITY (P, TH, X, XTOL, XN, EPS, LAMBDATOT)

LAMBDATOT2 = LAMBDAINTH + LAMBDATH + LAMBDATE + LAMBDAR

CALL KCONDUCTIVITYNEQ (P, TH, X, XTOL, XN, EPS, LAMBDATOT3)

C−−
C Dea l l o ca t e memory
C−−

CALL FINALIZEF()

C−−
STOP

C−−
END

C−−

Final report - 17 - FA 8655-08-1-3070

A SOURCE CODE

A.2 C implementation

#include <s t d i o . h>
#include <s t d l i b . h>

char path [] = "../mutation/resources" ;
char mixture [] = "air5" ;
char r e a c t i on [] = "air5" ;
char t r a n s f e r [] = "empty" ;

int IMOD;
int IS , JS , IC , IV , IE , IVIB , IELEQ;
int NS,NC,NV,NE,NVIB,NELEQ;

double EPS, EPSP1 ;
double TOLX, TOLY;
double ∗XTOL;
double RHO, RHOE, RHOEE, RHOER, ∗RHOEV;
double MM, ∗MMI;
double ∗X, ∗XP, ∗XN;
double ∗Y, ∗Y3 , ∗Y4 , ∗Y5 ;
double ∗XINI , ∗YINI ;
double ∗RHOI;
double P, ND;
double T, T2 , T3 , TINI ;
double TH , TE , TR , ∗TV ;
double THP, TEP, TRP, ∗TVP;
double ∗TVEC;
double EM, HM;
double ∗EM1 , ∗EM2 , ∗EM3 , ∗EM4 , ∗EM5 , ∗EM6 ;
double ∗EM1P, ∗EM2P, ∗EM3P, ∗EM4P, ∗EM5P, ∗EM6P;
double ∗HM1 , ∗HM2 , ∗HM3 , ∗HM4 , ∗HM5 , ∗HM6 ;
double ∗OMEGA;
double ETA;
double CPE, CPR, CPV;
double ∗CPINT;
double LAMBDAINTH, LAMBDATH, LAMBDATE;
double ∗CHIE, ∗CHIH;
double ∗FIJ ;
double ∗JDIF ;
double ∗DF;

int main (int argc , char∗∗ argv)
{

IMOD = 0 ;

Final report - 18 - FA 8655-08-1-3070

A SOURCE CODE

EPS = 1 . e−2;
EPSP1 = 1 . e0 + EPS;

TOLX = 1 . e−16;
TOLY = 1 . e−20;

//−−−
l ength (path , mixture , r eac t i on , t r a n s f e r) ;

NS = getns () ;
NC = getnc () ;
NE = getne () ;
NV = getnv () ;
NVIB = getnv ib () ;
NELEQ = ge tne l e q () ;

//−−−
X = (double ∗) c a l l o c (NS, s izeof (double)) ;
Y = (double ∗) c a l l o c (NS, s izeof (double)) ;
XP = (double ∗) c a l l o c (NS, s izeof (double)) ;
Y3 = (double ∗) c a l l o c (NS, s izeof (double)) ;
Y4 = (double ∗) c a l l o c (NS, s izeof (double)) ;
Y5 = (double ∗) c a l l o c (NS, s izeof (double)) ;
XN = (double ∗) c a l l o c (NC, s izeof (double)) ;
MMI = (double ∗) c a l l o c (NS, s izeof (double)) ;
XINI = (double ∗) c a l l o c (NS, s izeof (double)) ;
YINI = (double ∗) c a l l o c (NS, s izeof (double)) ;
XTOL = (double ∗) c a l l o c (NS, s izeof (double)) ;
RHOI = (double ∗) c a l l o c (NS, s izeof (double)) ;
CPINT = (double ∗) c a l l o c (NS, s izeof (double)) ;
TV = (double ∗) c a l l o c (NV, s izeof (double)) ;
TVP = (double ∗) c a l l o c (NV, s izeof (double)) ;
TVEC = (double ∗) c a l l o c (NVIB+2, s izeof (double)) ;

EM1 = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM2 = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM3 = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM4 = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM5 = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM6 = (double ∗) c a l l o c (NS, s izeof (double)) ;
HM1 = (double ∗) c a l l o c (NS, s izeof (double)) ;
HM2 = (double ∗) c a l l o c (NS, s izeof (double)) ;
HM3 = (double ∗) c a l l o c (NS, s izeof (double)) ;
HM4 = (double ∗) c a l l o c (NS, s izeof (double)) ;
HM5 = (double ∗) c a l l o c (NS, s izeof (double)) ;
HM6 = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM1P = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM2P = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM3P = (double ∗) c a l l o c (NS, s izeof (double)) ;

Final report - 19 - FA 8655-08-1-3070

A SOURCE CODE

EM4P = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM5P = (double ∗) c a l l o c (NS, s izeof (double)) ;
EM6P = (double ∗) c a l l o c (NS, s izeof (double)) ;

OMEGA = (double ∗) c a l l o c (NS, s izeof (double)) ;
CHIH = (double ∗) c a l l o c (NS, s izeof (double)) ;
CHIE = (double ∗) c a l l o c (NS, s izeof (double)) ;
DF = (double ∗) c a l l o c (NS, s izeof (double)) ;
JDIF = (double ∗) c a l l o c (NS, s izeof (double)) ;
CHIH = (double ∗) c a l l o c (NS, s izeof (double)) ;
CHIE = (double ∗) c a l l o c (NS, s izeof (double)) ;
FIJ = (double ∗) c a l l o c (NSMAX∗(NSMAX−1)/2) , s izeof (double)) ;

//−−−
TE = TH;
TR = TH;
i f (NV == 0)
{ TV[0] = 1 . ;
}
else

{ for (IV=0;IV<NV; IV++)
{ TV[IV] = TH;
}

}

TVEC[0] = TH;
for (IVIB=0;IVIB<NVIB; IVIB++)
{ TVEC[IVIB+1] = TV[0] ;
}
TVEC[NVIB+1] = TE;

//−−−
THP = TH∗EPSP1 ;
TEP = TE∗EPSP1 ;
TRP = TR∗EPSP1 ;
i f (NV == 0)
{ TVP[0] = TV[0] ∗EPSP1 ;
}
else

{ for (IV=0;IV<NV; IV++)
{ TVP[IV] = TV[IV]∗EPSP1 ;
}

}

//−−−
// Subrout ines to be c a l l e d on ly once
//−−−

i n i t i a l i z e (IMOD) ;

Final report - 20 - FA 8655-08-1-3070

A SOURCE CODE

setmass (MMI) ;
nuc l ea r (XN) ;

//−−−
// CASE 1: Local thermodynamic e qu i l i b r i um (LTE)
// wi th cons tant e l ementa l f r a c t i o n s
//
// −Obtain RHO, RHOE from CFD code
// −Use temperatue and sp e c i e mass f r a c t i o n s from prev ious
// i t e r a t i o n as i n i t i a l guess
//−−−

tceqnewton(&RHOE, &RHO, XN, YINI , &TINI , &T, Y) ;
mass2pressure (&RHO, &T, &T, Y, &P) ;
mass2mole (Y, X) ;
numberd(&P, &T, &T, X, &ND) ;

TH = T; TE = TH; TR = TH;
TVEC[0] = TH;
TVEC[NVIB+2−1] = TE;

//−−−
// CASE 2: Chemical non−e qu i l i b r i um and
// l o c a l thermal e qu i l i b r i um (LTE)
//
// −Obtain RHO, RHOI, Y, RHOE from CFD code
// −Use temperatue and sp e c i e mass f r a c t i o n s from prev ious
// i t e r a t i o n as i n i t i a l guess
//−−−

tcneqnewton(&RHOE, RHOI, &TINI , &T) ;
mass2pressure (&RHO, &T, &T, Y, &P) ;
mass2mole (Y, X) ;
numberd(&P, &T, &T, X, &ND) ;

TH = T; TE = TH; TR = TH;
TVEC[0] = TH;
TVEC[NVIB+2−1] = TE;

a r rhen iu s (Y, &TOLY, &P, TVEC, &RHO, OMEGA) ;

//−−−
// CASE 3: Chemical and thermal non−e qu i l i b r i um
// (TH != TE != TV(1) != TV(2) != . . .)
//
// −Obtain RHO, RHOI, Y, RHOE, RHOEE, RHOEV from CFD code
// −Compute TE, TR, TV(I)
// −Use temperatue and sp e c i e mass f r a c t i o n s from prev ious

Final report - 21 - FA 8655-08-1-3070

A SOURCE CODE

// i t e r a t i o n as i n i t i a l guess
//−−−

tcneqnntewton(&RHOE, &RHOEE, RHOEV, &RHOI, &TINI , &TH, &TE, TV) ;
mass2pressure (&RHO, &TH, &TE, Y, &P) ;
mass2mole (Y, X) ;
numberd(&P, &TH, &TE, X, &ND) ;

TR = TH;
TVEC[0] = TH;
for (IVIB=0;IVIB<NVIB; IVIB++)
{ TVEC[IVIB+2−1] = TV[IVIB] ;
}
TVEC[NVIB+1] = TE;

a r rhen iu s (Y, &TOLY, &P, TVEC, &RHO, OMEGA) ;

//−−−
// Ca lor i c Equation o f S ta t e (EOS)
//−−−

THP = TH∗EPSP1 ;
TEP = TE∗EPSP1 ;
TRP = TR∗EPSP1 ;
i f (NV == 0)
{ TVP[0] = TV[0] ∗EPSP1 ;
}
else

{ for (IV=0;IV<NV; IV++)
{ TVP[IV] = TV[IV]∗EPSP1 ;
}

}

energymass(&TH , &TE , &TR , TV , &P, EM1 , EM2 , EM3 , EM4 , EM5 , EM6) ;
energymass(&THP, &TEP, &TRP, TVP, &P, EM1P, EM2P, EM3P, EM4P, EM5P, EM6P) ;

for (IS=0; IS<NS; IS++)
{ CPE = (EM3P[IS] − EM3[IS]) / (EPS∗TH) ;

CPR = (EM4P[IS] − EM4[IS]) / (EPS∗TH) ;
CPV = (EM5P[IS] − EM5[IS]) / (EPS∗TH) ;
CPINT[IS] = MMI[IS] ∗ (CPE + CPR + CPV) ;

}

//−−−
// TRANSPORT equa t i ons
//−−−

compotol (X, &TOLX, XTOL) ;
c o l l i s i o n (&TH, &TE, &ND, X) ;
e tacg (XTOL, &ETA) ;

Final report - 22 - FA 8655-08-1-3070

A SOURCE CODE

lambdaint (CPINT, XTOL, &LAMBDAINTH) ;
lambdachicg (XTOL, &LAMBDATH, CHIH) ;

i f (NE != 0)
{ t d i f e (XTOL, &TE, CHIE, 3) ;

lambdae (XTOL, &TE, &LAMBDATE, 3) ;
}
else

{ LAMBDATE = 0 . ;
for (IS=0; IS<NS; IS++)
{ CHIE [IS] = 0 . ;
}

}

for (IS=0; IS<NS; IS++)
{ DF[IS] = (XP[IS] − X[IS]) / (TH∗EPS) + (CHIE [IS] + CHIH[IS]) /TH;
}

//−−−
// Di f f u s i on f l u x e s
//−−−

c o r r e c t i o n (XTOL, 1 , FIJ) ;
i f (NE != 0)
{ smramcg (XTOL, &TH, &TE, &ND, DF, FIJ , JDIF , &EAMB) ;
}
else

{ smneutcg (XTOL, &ND, DF, FIJ , JDIF) ;
EAMB = 0 . ;

}
d i j f i c k (XTOL, &ND, DIJ) ;
for (IS=0; IS<NS; IS++)
{ JDIF(IS) = 0 . ;

for (JS=0;JS<NS; JS++)
{ JDIF [IS] = JDIF [IS] − RHOI[IS]∗DIJ [IS] [JS]∗DF[JS] ;
}

}

//−−−
// Tota l thermal c ondu c t i v i t y
//−−−

LAMBDAR = 0 . ;
for (IS=0; IS<NS; IS++)
{ LAMBDAR = LAMBDAR − (EM1[IS] + 2 . / 3 . ∗EM2[IS]) ∗ JDIF [IS] ;
}

kconduct iv i ty (&P, &TH, X, XTOL, XN, &EPS, &LAMBDATOT) ;

LAMBDATOT = LAMBDAINTH + LAMBDATH + LAMBDATE + LAMBDAR;

Final report - 23 - FA 8655-08-1-3070

A SOURCE CODE

kconduct iv i tyneq(&P, &TH, X, XTOL, XN, &EPS, &LAMBDATOT) ;

//−−−
// Dea l l o ca t e memory
//−−−

f i n a l i z e () ;

//−−−

}

Final report - 24 - FA 8655-08-1-3070

A SOURCE CODE

A.3 Java implementation

/∗
∗ To change t h i s template , choose Tools | Templates
∗ and open the temp la te in the e d i t o r .
∗/

import mutation .Common;
import stat ic mutation . I n t e r f a c e . ∗ ;

/∗∗
∗
∗/

pub l i c c l a s s UseMutation
{

St r ing PATH = "../mutation/resources" ;
S t r i ng MIXTURE = "air5" ;
S t r i ng REACTION = "air5" ;
S t r i ng TRANSFER = "empty" ;

int IMOD;
int IS , JS , IC , IV , IE , IVIB , IELEQ;
int NS,NC,NV,NE,NVIB,NELEQ;

double EPS, EPSP1 ;
double TOLX, TOLY;
double XTOL [] ;
double RHO, RHOE, RHOEE, RHOER, RHOEV[] ;
double MM, MMI [] ;
double XN[] ;
double XP [] ;
double X[] , Y[] , Y3 [] , Y4 [] , Y5 [] ;
double XINI [] , YINI [] ;
double RHOI [] ;
double P, ND;
double T, TINI , T2 , T3 ;
double TH , TE , TR , TV [] ;
double THP, TEP, TRP, TVP [] ;
double TVEC[] ;
double EM, HM;
double EM1 [] , EM2 [] , EM3 [] , EM4 [] , EM5 [] , EM6 [] ;
double EM1P[] , EM2P[] , EM3P[] , EM4P[] , EM5P[] , EM6P [] ;
double HM1 [] , HM2 [] , HM3 [] , HM4 [] , HM5 [] , HM6 [] ;
double OMEGA[] ;
double ETA;
double CPE, CPR, CPV;

Final report - 25 - FA 8655-08-1-3070

A SOURCE CODE

double CPINT [] ;
double LAMBDAINTH, LAMBDATH, LAMBDATE;
double CHIE [] , CHIH [] ;
double JDIF [] , JDIF2 [] ,DF[] , FIJ [] ;
double EAMB;
double DIJ [] [] ;
double LAMBDAR, LAMBDAR2, LAMBDATOT, LAMBDATOT2, LAMBDATOT3;

Common common ;
Common.Memory1 memory1 ;
Common.Memory2 memory2 ;
Common.Memory3 memory3 ;
Common.Memory4 memory4 ;
Common.Memory5 memory5 ;
Common.Memory6 memory6 ;

pub l i c UseMutation (double P, double T)
{

common = new Common() ;
memory1 = common . new Memory1 () ;
memory2 = common . new Memory2 () ;
memory3 = common . new Memory3 () ;
memory4 = common . new Memory4 () ;
memory5 = common . new Memory5 () ;
memory6 = common . new Memory6 () ;

IMOD = 0 ;

EPS = 1 . e−02;
EPSP1 = 1 . e+00 + EPS;

TOLX = 1 . e−16;
TOLY = 1 . e−20;

t h i s .P = P;
t h i s .TH = T;

l ength (PATH, MIXTURE, REACTION, TRANSFER) ;
i n i t i a l i z e (IMOD) ;

getMemory1 (memory1) ;
NS = memory1 .NS ;
NC = memory1 .NC;
NE = memory1 .NE;
NV = memory1 .NV;

Final report - 26 - FA 8655-08-1-3070

A SOURCE CODE

NVIB = memory1 .NVIB;

X = new double [NS] ;
Y = new double [NS] ;
XP = new double [NS] ;
Y3 = new double [NS] ;
Y4 = new double [NS] ;
Y5 = new double [NS] ;
XN = new double [NC] ;
MMI = new double [NS] ;
XINI = new double [NS] ;
YINI = new double [NS] ;
XTOL = new double [NS] ;
RHOI = new double [NS] ;
CPINT = new double [NS] ;
RHOEV = new double [NV] ;
TV = new double [NV] ;
TVP = new double [NV] ;
TVEC = new double [NVIB+2] ;

EM1 = new double [NS] ;
EM2 = new double [NS] ;
EM3 = new double [NS] ;
EM4 = new double [NS] ;
EM5 = new double [NS] ;
EM6 = new double [NS] ;
HM1 = new double [NS] ;
HM2 = new double [NS] ;
HM3 = new double [NS] ;
HM4 = new double [NS] ;
HM5 = new double [NS] ;
HM6 = new double [NS] ;
EM1P = new double [NS] ;
EM2P = new double [NS] ;
EM3P = new double [NS] ;
EM4P = new double [NS] ;
EM5P = new double [NS] ;
EM6P = new double [NS] ;

OMEGA = new double [NS] ;
CHIH = new double [NS] ;
DF = new double [NS] ;
FIJ = new double [NS∗(NS−1)/2] ;
DIJ = new double [NS] [NS] ;

//−−−
TE = TH;
TR = TH;

Final report - 27 - FA 8655-08-1-3070

A SOURCE CODE

i f (NV == 0)
{ TV[0] = 1 . ;
}
else

{ for (IV=0;IV<NV; IV++)
{ TV[IV] = TH;
}

}

TVEC[0] = TH;
for (IVIB=0;IVIB<NVIB; IVIB++)
{ TVEC[IVIB+1] = TV[0] ;
}
TVEC[NVIB+1] = TE;

//−−−
THP = TH∗EPSP1 ;
TEP = TE∗EPSP1 ;
TRP = TR∗EPSP1 ;
i f (NV == 0)
{ TVP[0] = TV[0] ∗EPSP1 ;
}
else

{ for (IV=0;IV<NV; IV++)
{ TVP[IV] = TV[IV]∗EPSP1 ;
}

}

//−−−
// Subrout ines to be c a l l e d on ly once
//−−−

i n i t i a l i z e (IMOD) ;
setmass (MMI) ;
nuc l ea r (XN) ;

//−−−
// CASE 1: Local thermodynamic e qu i l i b r i um (LTE)
// wi th cons tant e l ementa l f r a c t i o n s
//
// −Obtain RHO, RHOE from CFD code
// −Use temperatue and sp e c i e mass f r a c t i o n s from prev ious
// i t e r a t i o n as i n i t i a l guess
//−−−

T = tceqnewton (RHOE, RHO, XN, YINI , TINI , T, Y) ;
P = mass2pressure (RHO, T, T, Y, P) ;
mass2mole (Y, X) ;
ND = numberd (P, T, T, X, ND) ;

Final report - 28 - FA 8655-08-1-3070

A SOURCE CODE

TH = T; TE = TH; TR = TH;
TVEC[0] = TH;
TVEC[NVIB+2−1] = TE;

//−−−
// CASE 2: Chemical non−e qu i l i b r i um and
// l o c a l thermal e qu i l i b r i um (LTE)
//
// −Obtain RHO, RHOI, Y, RHOE from CFD code
// −Use temperatue and sp e c i e mass f r a c t i o n s from prev ious
// i t e r a t i o n as i n i t i a l guess
//−−−

T = tcneqnewton (RHOE, RHOI, TINI , T) ;
P = mass2pressure (RHO, T, T, Y, P) ;
mass2mole (Y, X) ;
ND = numberd (P, T, T, X, ND) ;

TH = T; TE = TH; TR = TH;
TVEC[0] = TH;
TVEC[NVIB+2−1] = TE;

a r rhen iu s (Y, TOLY, P, TVEC, RHO, OMEGA) ;

//−−−
// CASE 3: Chemical and thermal non−e qu i l i b r i um
// (TH != TE != TV(1) != TV(2) != . . .)
//
// −Obtain RHO, RHOI, Y, RHOE, RHOEE, RHOEV from CFD code
// −Compute TE, TR, TV(I)
// −Use temperatue and sp e c i e mass f r a c t i o n s from prev ious
// i t e r a t i o n as i n i t i a l guess
//−−−

tcneqntnewton (RHOE, RHOEE, RHOEV, RHOI, TINI , TH, TE, TV, TVEC) ;

TH = TVEC[0] ; TR = TH;
for (IVIB=0;IVIB<NVIB; IVIB++)
{ TV[IVIB] = TVEC[IVIB+2−1];
}
TE = TVEC[NVIB+1] ;

P = mass2pressure (RHO, TH, TE, Y, P) ;
mass2mole (Y, X) ;
ND = numberd (P, TH, TE, X, ND) ;
a r rhen iu s (Y, TOLY, P, TVEC, RHO, OMEGA) ;

Final report - 29 - FA 8655-08-1-3070

A SOURCE CODE

//−−−
// Ca lor i c Equation o f S ta t e (EOS)
//−−−

THP = TH∗EPSP1 ;
TEP = TE∗EPSP1 ;
TRP = TR∗EPSP1 ;
i f (NV == 0)
{ TVP[0] = TV[0] ∗EPSP1 ;
}
else

{ for (IV=0;IV<NV; IV++)
{ TVP[IV] = TV[IV]∗EPSP1 ;
}

}
energymass (TH , TE , TR , TV , P, EM1 , EM2 , EM3 , EM4 , EM5 , EM6) ;
energymass (THP, TEP, TRP, TVP, P, EM1P, EM2P, EM3P, EM4P, EM5P, EM6P) ;

for (IS=0; IS<NS; IS++)
{ CPE = (EM3P[IS] − EM3[IS]) / (EPS∗TH) ;

CPR = (EM4P[IS] − EM4[IS]) / (EPS∗TH) ;
CPV = (EM5P[IS] − EM5[IS]) / (EPS∗TH) ;
CPINT[IS] = MMI[IS] ∗ (CPE + CPR + CPV) ;

}

//−−−
// TRANSPORT equa t i ons
//−−−

compotol (X, TOLX, XTOL) ;
c o l l i s i o n (TH, TE, ND, X) ;
ETA = etacg (XTOL, ETA) ;
LAMBDAINTH = lambdaint (CPINT, XTOL, LAMBDAINTH) ;
lambdachicg (XTOL, LAMBDATH, CHIH) ;

i f (NE != 0)
{ t d i f e (XTOL, TE, CHIE, 3) ;

LAMBDATE = lambdae (XTOL, TE, LAMBDATE, 3) ;
}
else

{ LAMBDATE = 0 . ;
for (IS=0; IS<NS; IS++)
{ CHIE [IS] = 0 . ;
}

}

for (IS=0; IS<NS; IS++)
{ DF[IS] = (XP[IS] − X[IS]) / (TH∗EPS) + (CHIE [IS] + CHIH[IS]) /TH;
}

Final report - 30 - FA 8655-08-1-3070

A SOURCE CODE

//−−−
// Di f f u s i on f l u x e s
//−−−

c o r r e c t i o n (XTOL, 1 , FIJ) ;
i f (NE != 0)
{ EAMB = smramcg (XTOL, TH, TE, ND, DF, FIJ , JDIF , EAMB) ;
}
else

{ smneutcg (XTOL, ND, DF, FIJ , JDIF) ;
EAMB = 0 . ;

}
d i j f i c k (XTOL, ND, DIJ) ;
for (IS=0; IS<NS; IS++)
{ JDIF [IS] = 0 . ;

for (JS=0;JS<NS; JS++)
{ JDIF [IS] = JDIF [IS] − RHOI[IS]∗DIJ [IS] [JS]∗DF[JS] ;
}

}

//−−−
// Tota l thermal c ondu c t i v i t y
//−−−

LAMBDAR = 0 . ;
for (IS=0; IS<NS; IS++)
{ LAMBDAR = LAMBDAR − (EM1[IS] + 2 . / 3 . ∗EM2[IS]) ∗ JDIF [IS] ;
}

LAMBDATOT = kconduct iv i ty (P, TH, X, XTOL, XN, EPS, LAMBDATOT) ;

LAMBDATOT = LAMBDAINTH + LAMBDATH + LAMBDATE + LAMBDAR;

LAMBDATOT = kconduct iv i tyneq (P, TH, X, XTOL, XN, EPS, LAMBDATOT) ;

//−−−
// Dea l l o ca t e memory
//−−−

f i n a l i z e j () ;

}
}

Final report - 31 - FA 8655-08-1-3070

